
Browser Exploitation
Jameel Nabbo
Bufferoverflows.net

SEC-T Stockholm 2019

Browser exploitation generic

Techniques used in the exploit kits

UAF exploitation over the years

Java drive exploits

Web app in asm

Web assembly

Delivery techniques

Why it’s interesting

Everyone is
using a web

browser

No much user
interaction is

needed

Used for
targeted
attacks

SEC-T Stockholm 2019

DOM tree exploitation is *******
oXSS

oCSRF

oCORS

oContent injection

oHTML injection

oSecond order code injection

SEC-T Stockholm 2019

DOM tree exploitation is ******
oXSS

oCSRF

oCORS

oContent injection

oHTML injection

oSecond order code injection

SEC-T Stockholm 2019

Exploiting the web browser

Browser

WASM

Old
fashioned

Browser
engine

JS CORE

Unknown

SEC-T Stockholm 2019

The old fashioned of browser exploitation

JAVA drive-by

Adobe Flash

Microsoft Silverlight

ActiveX add-ons for web browsers (Mainly internet explorer)

SEC-T Stockholm 2019

Exploit Kits

Blackhole Phoenix MPack Crimepack

RIG Angler Nuclear Neutrino

Magnitude
SEC-T Stockholm 2019

King of exploit kits
SEC-T Stockholm 2019

Blackhole
&

Angler
Angler used vulnerabilities in Internet Explorer, Silverlight,

Flash Player, Adobe Reader, Java, Internet Explorer, and
Flash

Angler is born

Blackhole ended in 2013

SEC-T Stockholm 2019

Enumeration techniques used in Angler
on IE 8 & 9 & 10

Exploit Microsoft XMLDOM in IE
CVE-2013-7331/ MS14-052

Get internal file system structure

Generate the payload

SEC-T Stockholm 2019

MS14-052

XMLDOM

Angler exploit kit
SEC-T Stockholm 2019

Pre-exploitation
phase in
MS14-052

The first attack is used for
targeting the French Aerospace Association

Detect if this PC belongs to an analyst

SEC-T Stockholm 2019

Used to Detect Kaspersky – EMET - TrendMicro

SEC-T Stockholm 2019

If (Browser ==)|| || || ||

UAF
SEC-T Stockholm 2019

UAF “Use
After Free”
Exploitation

Use-After-Free vulnerabilities are a type of memory corruption
flaw that can be leveraged by hackers to execute arbitrary code.

UAF occurs:

ØA memory area is allocated and a pointer points to it.

ØThe memory area is freed but the pointer is still available.

ØThe pointer is used and accesses the memory area previously
freed.

SEC-T Stockholm 2019

UAF to code
execution

Program allocates and then later frees
memory block A.

Attacker allocates a memory block B, reusing
the memory previously allocated to block A.

Attacker writes data into block B.

Program uses freed block A, accessing the
data the attacker left there.

SEC-T Stockholm 2019

UAF Example

Dangling pointer

SEC-T Stockholm 2019

4 years of happy UAF in Firefox , SeaMonkey

If date >= 2007 && date <= 2011

{
◦ Use-after-free, 'OnChannelRedirect’ // CVE-2008-3835 - CVE-2011-0065
◦ heapspray with a minimal ROP chain to bypass DEP

}

SEC-T Stockholm 2019

Vanilla heap Spray in Firefox, SeaMonkey

Init Fake
Vtable

Fill the
heap block

Nops +
Shellcode

Have fun J
BSTR / DWORD

SEC-T Stockholm 2019

CVE-2011-0065

SEC-T Stockholm 2019

Snowman & Deputydog Operations

https://www.zdnet.com/article/new-internet-explorer-10-zero-day-exploit-targets-u-s-military/
SEC-T Stockholm 2019

https://www.zdnet.com/article/new-internet-explorer-10-zero-day-exploit-targets-u-s-military/

Snowman & deputydog Operations Targets

ØU.S. government entities

ØJapanese firms

ØDefense industrial base (DIB) companies

ØLaw firms

ØInformation technology (IT) companies

ØMining companies

ØNon-governmental organizations (NGOs)

SEC-T Stockholm 2019

The delivery
technique of
CVE-2014-0322

SEC-T Stockholm 2019

Tope.SWF that leads to a second stage dropper called "Erido.jpg"

SEC-T Stockholm 2019

UAF Adobe Flash
CVE-2015-5119

SEC-T Stockholm 2019

Silent Java-drive by – Rhino
engine
Exploiting IE, Firefox, Google
Chrome (All systems)

Rhino is a JavaScript engine
written fully in Java and
managed by the Mozilla
Foundation as open source
software.

SEC-T Stockholm 2019

Some popular java CVEs
• CVE-2011-0802
• CVE-2011-0814
• CVE-2011-0862
• CVE-2011-0863
• CVE-2011-0865
• CVE-2011-3544
• CVE-2011-0867
• CVE-2011-0868
• CVE-2011-0869
• CVE-2011-0871
• CVE-2011-0873
• CVE-2011-3389
• CVE-2011-3516
• CVE-2011-3521

• CVE-2011-3544
• CVE-2011-3545
• CVE-2011-3546
• CVE-2011-3547
• CVE-2011-3548
• CVE-2011-3549
• CVE-2011-3550
• CVE-2011-3551
• CVE-2011-3552
• CVE-2011-3553
• CVE-2011-3554
• CVE-2011-3556
• CVE-2011-3557

• CVE-2011-3560
• CVE-2011-3561
• CVE-2011-3563
• CVE-2011-5035
• CVE-2012-0497
• CVE-2012-0498
• CVE-2012-0499
• CVE-2012-0500
• CVE-2012-0501
• CVE-2012-0502
• CVE-2012-0503
• CVE-2012-0505
• CVE-2012-0506

• CVE-2012-0507
• CVE-2012-0547
• CVE-2012-0551
• CVE-2012-1531
• CVE-2012-1532
• CVE-2012-1533
• CVE-2012-1541
• CVE-2012-1682
• CVE-2012-1713
• CVE-2012-1716
• CVE-2012-1717
• CVE-2012-1718
• CVE-2012-1719

SEC-T Stockholm 2019

Exploiting
Rhino Scripting
Engine

Rhino scripting engine NativeError class
On the other hand, when you build such an error object and try to call it from outside the script,
you'll see a surprise:

Exploit steps:
o Assign a toString() method to this that will disable the

security manager and then run the payload
o Create a new JavaScript error object
o Overwrite the error object's message property by this
o Return the error object

Execution steps:
o Create a new script engine and bind the

applet to a JS variable
o Add the resulting object to a JList
o Display the JList to the user and wait for the

UI thread to render it

Pure ASM web app

Rendering a web page with a simple request handling method using assembly (Native code)

Web Assembly

Asm.js

Why WASM is
there while
we have JS
already?

qWASM is a compiler target

qFaster than JS code, because WASM is native code, while JS
code needs to be parsed first

qWASM allows us to execute C/C++ code on the browser with a
performance close to native

qWASM wasn't made to be a substitute for JS but to work
alongside with it

qWASM is often used for developing web games

Speed, Portability, Flexibility

JS VS WASM

https://blog.logrocket.com/webassembly-how-and-why-559b7f96cd71/

https://blog.logrocket.com/webassembly-how-and-why-559b7f96cd71/

WASM supports

Browsers that support WebAssembly

The funny part

ASM and WASM format

WASM binary
blobs structure

Section Code Description

Type 1 Contains a list of function signatures used by functions defined and called by the
module. Each signature has an index, and can be used by multiple functions by
specifying that index.

Imports 2 Contains the names and types of objects to be imported.

Functions 3 The declarations (including the index of a signature specified in the Type Section)
of the functions defined in this module.

Table 4 Contains details about function tables

Memory 5 Contains details about memory

Global 6 Global declarations

Exports 7 Contains the names and types of objects and functions that will be exported.

Start 8 Specifies a function that will be called on Module start-up

Elements 9 Table initialization information

Code 10 The WebAssembly instructions that make up the body of each function.

Data 11 Memory initialization information

Custom Section J

WebAssembly Modules

WASM Bin ArrayBuffer
loaded into a
WebAssembly

Module

WASM
Module

initialization
information
specified by
the bytes in

binary format

module is
created

Parse the Bin Load needed
info

translates the
WebAssembly

instructions

intermediate
bytecode Execute

Verification of the WebAssembly instructions

Security issues in WASM

Parsing Loading
WASM module

Translates the
WebAssembly

instructions

Intermediate
bytecode

WASM
Example in
RUST

Rust is a multi-paradigm system programming
language focused on safety, especially safe
concurrency. Rust is syntactically similar to C++, but is
designed to provide better memory safety while
maintaining high performance.

curl https://sh.rustup.rs -sSf | sh // brew install rust

Building Wasm app using rust

All what you need: wasmbyexample.dev

cargo install wasm-pack // cargo init
wasm-pack build --target web

Wasm Page
Index.js Index.html

WASM using assembly script typescript-
like (Common in the exploitation)

hello-world.ts

asc hello-world.ts -b hello-world.wasm

hello-world.js

loading Wasm modules

WebAssembly.instantiateStreaming()

Executing it on the fly J

Index.htmlHello-world.js

WASM parser exploitation

COMPILING THE SOURCE
BUFFER

FUNCTION
getWasmBufferFromValue Returns the code buffer

WebAssembly source buffers in WebKit / out-of-bounds read

Return arrayBufferView ? static_cast<uint8_t*>(arrayBufferView->vector()) : static_cast<uint8_t*>(arrayBuffer->impl()->data());

If the source buffer is a view (DataView or TypedArray), arrayBufferView->vector() is returned. The vector() method returns the start of the data in the buffer, including any offset.
However, the function createSourceBufferFromValue copies the output of this function as follows:

memcpy(result.data(), data + byteOffset, byteSize);

This means that if the buffer is a view, the offset is added to the buffer twice before this is copied. This could allow memory off the heap
to be read out of the source buffer, either though parsing exceptions or data sections when they are copied

memcpy(result.data(), data + byteOffset, byteSize);

memcpy

Example
CVE-2018-4222
POC

(Type confusion / BOF)

If the previous section was a custom section, the check always returns true, even if the section is
otherwise out of order. This means any number of sections can be parsed from a binary,
any number of times in any order

Exploiting Chrome UAF using WASM functions

bc = [0x0, 0x61, 0x73, 0x6d, 0x1, 0x0, 0x0, 0x0, 0x1,
wasm_code = new Uint8Array(bc);
wasm_mod = new WebAssembly.Instance(new WebAssembly.Module(wasm_code), importObject);
return wasm_mod.exports.exported_func;

var importObject = {
imports: { imported_func: arg => console.log(arg) }

};

FileReader

ASM JS & JIT Spray “Love Story”

If exploit == JIT spray {

Browser == “FireFox”;

}

https://rh0dev.github.io/blog/2017/the-return-of-the-jit/

https://rh0dev.github.io/blog/2017/the-return-of-the-jit/

Techniques for delivering the browser exploits
High profile individuals

Enumerating their system and mail client by sending an empty email with 1PX image.

When the image is requested on the server side, it will store the request data (Versions, sys info etc.)

Click here to view in the browser ʘ‿ʘ

Email delivery using Iframes

Loading Iframes is supported by default in the email clients for the following:

ØWindows Mail

ØApple Mail 3 / 4

ØThunderbird

ØAndroid (default client)

ØiPhone / iPad

Browser local storage (Black Hole)

My research in
2018

Storing the file
in browser
Local storage

Conclusion

ØBrowser exploitation is a science in itself

ØThe best source for doing the research is by reading the source

code and delivery techniques that is used in the exploit kits.

ØExploit-DB POCs

ØBinary exploitation and debugging techniques

Credits

@exodusintel

@Rh0

Google research team

Michael Schierl

References
https://soroush.secproject.com/blog/2013/04/microsoft-xmldom-in-ie-can-divulge-information-of-local-drivenetwork-in-error-messages

https://www.mozilla.org/en-US/security/advisories/mfsa2008-38/

https://downloads.avaya.com/css/P8/documents/100144158

https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-
website.html

https://blog.malwarebytes.com/threats/angler/

https://www.symantec.com/connect/blogs/emerging-threat-ms-ie-10-zero-day-cve-2014-0322-use-after-free-remote-code-execution-vulnerabi

https://www.exploit-db.com/exploits/18171

https://www.exploit-db.com/exploits/44427

https://github.com/JameelNabbo/browser-exploit-POC

https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/browser/adobe_flash_hacking_team_uaf.rb

https://www.alienvault.com/blogs/labs-research/attackers-abusing-internet-explorer-to-enumerate-software-and-detect-securi

https://www.forcepoint.com/blog/security-labs/msie-0-day-exploit-cve-2014-0322-possibly-targeting-french-aerospace-association

https://soroush.secproject.com/blog/2013/04/microsoft-xmldom-in-ie-can-divulge-information-of-local-drivenetwork-in-error-messages/
https://www.mozilla.org/en-US/security/advisories/mfsa2008-38/
https://downloads.avaya.com/css/P8/documents/100144158
https://www.fireeye.com/blog/threat-research/2014/02/operation-snowman-deputydog-actor-compromises-us-veterans-of-foreign-wars-website.html
https://blog.malwarebytes.com/threats/angler/
https://www.symantec.com/connect/blogs/emerging-threat-ms-ie-10-zero-day-cve-2014-0322-use-after-free-remote-code-execution-vulnerabi
https://www.exploit-db.com/exploits/18171
https://www.exploit-db.com/exploits/44427
https://github.com/JameelNabbo/browser-exploit-POC
https://github.com/rapid7/metasploit-framework/blob/master/modules/exploits/multi/browser/adobe_flash_hacking_team_uaf.rb
https://www.alienvault.com/blogs/labs-research/attackers-abusing-internet-explorer-to-enumerate-software-and-detect-securi
https://www.forcepoint.com/blog/security-labs/msie-0-day-exploit-cve-2014-0322-possibly-targeting-french-aerospace-association

References
https://github.com/exodusintel/CVE-2019-5786

https://blog.logrocket.com/webassembly-how-and-why-559b7f96cd71/

https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html

https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md

https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf

http://schierlm.users.sourceforge.net/CVE-2011-3544.html

https://github.com/capitanblack8/maziyar/commit/9e71be8ed0469781a6046de2b4b6f8b0082c9026#diff-
9ee135f5b54142c131a3a40b085d9da9

https://www.exploit-db.com/exploits/18171

https://wasmbyexample.dev/examples/hello-world/hello-world.rust.en-us.html

https://github.com/exodusintel/CVE-2019-5786
https://blog.logrocket.com/webassembly-how-and-why-559b7f96cd71/
https://googleprojectzero.blogspot.com/2018/08/the-problems-and-promise-of-webassembly.html
https://github.com/WebAssembly/design/blob/master/BinaryEncoding.md
https://labs.mwrinfosecurity.com/assets/BlogFiles/apple-safari-wasm-section-vuln-write-up-2018-04-16.pdf
http://schierlm.users.sourceforge.net/CVE-2011-3544.html
https://github.com/capitanblack8/maziyar/commit/9e71be8ed0469781a6046de2b4b6f8b0082c9026
https://www.exploit-db.com/exploits/18171
https://wasmbyexample.dev/examples/hello-world/hello-world.rust.en-us.html

